# Rosenbluth Separation of electropion production cross-section from Hydrogen and Carbon

Xin Qian

Duke University, Durham, NC, USA

On the behalf of Jefferson Laboratory E01-107 collaboration

- Introduction
- Overview of E01-107
- Preliminary results
- Summary



### Motivation of E01-107

Search for Color-Transparency

Colour Transparency is a phenomenon predicted by QCD in which hadrons produced at large momentum transfer can pass through nuclear matter with little or no interaction

• qq or qqq that have small transverse size are preferentially selected at large Q² (Quantum mechanics)

- •The hadron can propagate out of the nucleus before returning to its equilibrium size (Relativity)
- Reduced interaction,  $\sigma_{PLC} \propto (r_{PLC})^2$



### Motivation of Rosenbluth Separation

Measuring Nuclear Transparency
 Nuclear Transparency is defined by :

$$R_{T} = \frac{Y_{data}^{nucleus} / Y_{SIMC}^{nucleus}}{Y_{data}^{hydrogen} / Y_{SIMC}^{hydrogen}}$$

- Expected Yield can be calculated used realistic nucleon momentum distributions <u>under quasi-free</u> <u>assumption</u>.
- Quasi-free assumption can be verified by carrying out Rosenbluth separation.  $\sigma_{I}^{hydrogen}$   $\sigma_{I}^{nucleus}$

 $\sigma_T^{hydrogen}$ 

### **Kinematics**

Electro pion five-fold DXs can be written as:

$$\frac{d^5\sigma}{d\Omega_e dE_e d\Omega_\pi} = \Gamma \frac{d^2\sigma}{d\Omega_\pi}$$

 $\Gamma$ : virtual photon flux.

Photo pion DXs can be decomposed by virtual photon polarization:



**FIGURE 1.** The  $(e, e'\pi)$  reaction in lab frame.

In parallel kinematics (  $\theta_{\pi} = 0$ )

$$\frac{d^2\sigma}{d\Omega_{\pi}} = \epsilon \frac{d^2\sigma_L}{d\Omega_{\pi}} + \frac{d^2\sigma_T}{d\Omega_{\pi}} + \sqrt{2\epsilon(\epsilon + 1)} \frac{d^2\sigma_{LT}}{\partial Z_{\pi}} \delta s(\phi_{\pi}) + \epsilon \frac{\sigma_T}{\Omega_{\pi}} ss(2\phi)$$

### Rosenbluth Separation

By performing experiment at two values of virtual photon polarization, we can extract longitudinal and transverse electro-pion production DXs:

$$<\frac{d^2\sigma_L}{d\Omega_\pi}> = \frac{<\frac{d^2\sigma_1}{d\Omega_\pi}> - <\frac{d^2\sigma_2}{d\Omega_\pi}>}{<\epsilon_1> - <\epsilon_2>}$$

$$<\frac{d^2\sigma_T}{d\Omega_\pi}> = \frac{<\frac{d^2\sigma_1}{d\Omega_\pi}>\cdot<\epsilon_2>-<\frac{d^2\sigma_2}{d\Omega_\pi}>\cdot<\epsilon_1>}{<\epsilon_1>-<\epsilon_2>}$$

### Overview of E01-107

- Spokespersons: D. Dutta, R. Ent and K. Garrow
- Experiment ran at Jefferson Lab in Hall C in 2004
- Standard Hall C equipment was used

(e,e' π+)

Electron beam energy (4.0 to 5.8 GeV)

Electron in the SOS (0.73 to 1.73 GeV/c)

Pion in the HMS (2.1 to 4.4 GeV/c)



### **Kinematics**

## LH<sub>2</sub>, LD<sub>2</sub>, <sup>12</sup>C, <sup>63</sup>Cu and <sup>197</sup>Au targets at each kinematic setting

|   | $\mathbf{Q}^2$ | W         | -t        | Ebeam | θ <sub>hms</sub> | P <sub>hms</sub> | $\theta_{sos}$ | P <sub>sos</sub> | X <sub>B</sub> J | J        |
|---|----------------|-----------|-----------|-------|------------------|------------------|----------------|------------------|------------------|----------|
|   | (GeV           | (2) (GeV) | $(GeV^2)$ | (GeV) | (deg)            | (GeV/            | c) (deg)       | (GeV             |                  |          |
|   | 1.1            | 2.3       | 0.05      | 4.0   | 10.6             | 2.8              | <b>27.8</b>    | -1.2             | 0.50 0.2         | 1        |
|   | 2.15           | 2.2       | 0.16      | 5.0   | 13.4             | 3.2              | 28.9           | -1.7             | 0.56 0.3         | <u>5</u> |
|   | 3.0            | 2.1       | 0.29      | 5.0   | 12.7             | 3.4              | 37.8           | -1.4             | 0.45 0.4         | 4        |
|   | 4.0            | 2.2       | 0.40      | 5.8   | 11.5             | 4.1              | 40.4           | -1.5             | 0.39 0.5         | 0        |
|   | 4.8            | 2.2       | 0.52      | 5.8   | 10.6             | 4.4              | <b>52.7</b>    | -1.1             | 0.26 0.5         | 4        |
|   | 2.15           | 2.2       | 0.16      | 4.0   | 10.6             | 3.2              | 50.8           | -0.7             | 0.27 0.3         | 5        |
|   | 4.0            | 2.1       | 0.44      | 5.0   | 10.6             | 3.9              | 55.9           | -0.9             | 0.25 0.5         | 2        |
| t | 2.15           | 1.7       | 0.37      | 4.0   | 20.0             | 2.1              | 32.3           | -1.7             | 0.63 0.5         | 0        |
|   |                |           |           |       |                  |                  |                |                  |                  |          |

L-T separation L-T separation W vs k<sub>π</sub> test point

 $(k_{\pi} = momentum of the virtual pion)$ 

### Particle Identification (PID)

Electron arm (SOS) at 1.4 GeV

Cerenkov effic = 99.4%



Pion arm (HMS) at 3.2 GeV

Cerenkov effic = 98.5%



### Preliminary results at $Q^2 = 2.15 \text{ GeV}^2$



statistical uncertainties only
Carbon points have be shifted by 0.01 for clarity

### Preliminary results at $Q^2 = 2.15 \text{ GeV}^2$



statistical uncertainties only
Carbon points have be shifted by 0.01 for clarity

### Preliminary results at Q<sup>2</sup> =4.0 GeV<sup>2</sup>



statistical uncertainties only
Carbon points have be shifted by 0.01 for clarity

### Preliminary results at $Q^2 = 4.0 \text{ GeV}^2$



statistical uncertainties only
Carbon points have be shifted by 0.01 for clarity

### Preliminary results on ratio



statistical uncertainties only
Carbon points have be shifted by 0.1 for clarity

### Summary

- E01-107 will provide the FIRST nuclear transparency data from (e,e  $\pi$  <sup>+</sup>) reactions.
- Rosenbluth separation has been carried out for the first time with (e,e'  $\pi$  <sup>+</sup>) on Carbon at Q<sup>2</sup> = 2.15 and 4.0 GeV<sup>2</sup> and Hydrogen at Q<sup>2</sup> = 4.0 GeV<sup>2</sup>.
- Preliminary results are in good agreement with quasi-free assumptions for  $Q^2 = 2.15$  and 4.0 GeV<sup>2</sup>.
- Rosenbluth separation for Copper and Gold targets will be carried out in the near future. 14

### E01-107 collaboration

#### Y. Liang

American University, Washington, DC

#### J. Arrington, L. El Fassi, X. Zheng

Argonne National Laboratory, Argonne, IL

#### T. Mertens, D. Rohe

Basel Univeristy, Basel, Switzerland

#### R. Monson

Central Michigan University, Mount Pleasant, MI

#### C. Perdrisat

College of William and Mary, Williamsburg, VA

#### D. Dutta (Spokesperson), H. Gao, K. Kramer, X. Qian

Duke University, Durham, NC

#### W. Boeglin, P. Markowitz

Florida International University, Miami, FL

#### M. E. Christy, C. E. Keppel, S. Malace, E. Segbefia, L. Tang, L. Yuan

Hampton University, Hampton, VA

#### J. Ferrer, G. Niculescu, I. Niculescu

James Madison University, Harrisonburg, VA

#### P. Bosted, A. Bruell, R. Carlini, E. Chudakov, V. Dharmawardane,

R.Ent (Spokesperson), H. Fenker. D. Gaskell, M. K. Jones, A. Lung, D. G. Meekins, G. Smith, W. F. Vulcan, S. A. Wood

Jefferson Laboratory, Newport News, VA

#### B. Clasie, J. Seely

Massachusetts Institute of Technology, Cambridge, MA

#### V. Punjabi

A. K. Opper

Ohio University, Athens, OH

#### A. Villano

Rensselaer Polytechnic Institute, Troy, NY

#### F. Benmokhtar

Rutgers University, Piscataway, NJ and Universite' des Sciences et de la Technologie, Algiers, Algeria

#### Y. Okayasu, A. Matsumura, T. Miyoshi, M. Sumihama

Tohoku University, Sendai, Japan

#### K. Garrow (Spokesperson)

TRIUMF, Vancouver, British Columbia, Canada

#### A. Daniel, N. Kalantarians, Y. Li, V. Rodriguez

University of Houston, Houston, TX

#### A. W. Rauf

University of Manitoba, Winnipeg, Manitoba, Canada

#### T. Horn

University of Maryland, College Park, MD

#### G. M. Huber

University of Regina, Regina, Saskatchewan, Canada

#### D. Day, N. Fomin

University of Virginia, Charlottesville, VA

#### M. Dalton, C. Gray

University of the Witwatersrand, Johannesburg, South Africa

#### R. Asaturyan, H. Mkrtchyan, T. Navasardyan, V. Tadevosyam 5

Yervan Physics Institute, Yervan, Armenia

### Systematic uncertainty estimation

- SOS Cerenkov Efficiency 0.5 (pt to pt)
- HMS Cerenkov Efficiency 1.0 (pt to pt)
- Charge 1.0 (Normalization)
- Target thickness 1.0 (Normalization)
- HMS and SOS trigger efficiency 2.0 (Pt to Pt)
- Computer dead time 0.1
- Coincidence blocking 0.1
- Tracking efficiency0.5
- Pion absorption 3.0 (normalization)
- Pion absorption (between target) 1.0
- Kinematics Ebeam 0.5
- Kinematics sstheta0.5

Hydrogen DXs: 7.99 %

- Kinematics spcentral 0.5
- Kinematics hstheta 0.3
- Kinematics hpcentral 0.3
- Pion decay2.0 (Pt to Pt)
- Collimator punch-through 3.0 (Pt to Pt)
- Radiative correction 2.5 (Pt to Pt)
- Acceptance5.0 (Pt to Pt)
- Dummy subtraction 0.2 (Pt to Pt)
- HMS electronic dead time 0.4
- SOS electronic dead time 0.3
- Target boiling
  1.0 (Normalization)
- Carbon spectral function 1.0 (Normalization)
- Model dependence 10.0

Carbon DXs: 12.84 %

The estimated systematic uncertainties at this stage are 7% pt-pt, 3.6% normalization and 10% model dependent. We expect to improve several of these uncertainties. <sup>16</sup>